Bayesian nonparametric models for bipartite graphs(Francois Caron-INRIA)

2013-04-16 9

Bayesian nonparametric models for bipartite graphs

In this talk I will present a novel Bayesian nonparametric model for bipartite graphs, based on the theory of completely random measures. The model is able to handle a potentially infinite number of nodes and has appealing properties; in particular, it may exhibit a power-law behavior for some values of the parameters. I derive a posterior characterization, a generative process for network growth, and a simple Gibbs sampler for posterior simulation. Finally, the model is shown to provide a good fit to several large real-world bipartite social networks