Calculus I - Derivative of Inverse Hyperbolic Cosine Function arccosh(x) - Proof
2015-04-02
11
Proof of the derivative formula for the inverse hyperbolic cosine function.
Please enable JavaScript to view the
comments powered by Disqus.
Videos similaires
Calculus I - Derivative of Hyperbolic Cosine Function cosh(x) - Proof
Calculus I - Derivative of Inverse Cosine Function arccos(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Sine Function arcsinh(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Tangent Function arctanh(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Secant Function arcsech(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Cotangent Function arccoth(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Cosecant Function arccsch(x) - Proof
Derivatives of Inverse Hyperbolic Functions 1
Calculus II - Integration Formula for the Inverse Cosine Function
Calculus I - Derivatives of Sine and Cosine Functions - Proofs