Calculus I - Derivative of Hyperbolic Cotangent Function coth(x) - Proof
2015-04-02
20
Proof of the derivative formula for the hyperbolic cotangent function.
Please enable JavaScript to view the
comments powered by Disqus.
Videos similaires
Calculus I - Derivative of Inverse Hyperbolic Sine Function arcsinh(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Cosine Function arccosh(x) - Proof
Calculus I - Derivative of Hyperbolic Secant Function sech(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Secant Function arcsech(x) - Proof
Calculus I - Derivative of Hyperbolic Cosine Function cosh(x) - Proof
Calculus I - Derivative of Hyperbolic Tangent Function tanh(x) - Proof
Calculus I - Derivative of Hyperbolic Sine Function sinh(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Tangent Function arctanh(x) - Proof
Calculus I - Derivative of Inverse Hyperbolic Cotangent Function arccoth(x) - Proof
Derivatives of Hyperbolic Functions Example 1